Interaction study of MADS-domain proteins in tomato.

نویسندگان

  • Charles H Leseberg
  • Christie L Eissler
  • Xiang Wang
  • Mitrick A Johns
  • Melvin R Duvall
  • Long Mao
چکیده

MADS-domain proteins are important transcription factors involved in many biological processes of plants. Interactions between MADS-domain proteins are essential for their functions. In tomato (Solanum lycopersicum), the number of MIKC(c)-type MADS-domain proteins identified has totalled 36, but a large-scale interaction assay is lacking. In this study, 22 tomato MADS-domain proteins were selected from six functionally important subfamilies of the MADS-box gene family, to create the first large-scale tomato protein interaction network. Compared with Arabidopsis and petunia (Petunia hybrida), protein interaction patterns in tomato displayed both conservation and divergence. The majority of proteins that can be identified as putative orthologues exhibited conserved interaction patterns, and modifications were mostly found in genes underlining traits unique to tomato. JOINTLESS and RIN, characterized for their roles in abscission zone development and fruit ripening, respectively, showed enlarged interaction networks in comparison with their Arabidopsis and petunia counterparts. Novel interactions were also found for members of the expanded subfamilies, such as those represented by AP1/FUL and AP3/PI MADS-domain proteins. In search for higher order complexes, TM5 was found to be the preferred bridge among the five SEP-like proteins. Additionally, 16 proteins with the MADS-domain removed were used to assess the role of the MADS-domain in protein-protein interactions. The current work provides important knowledge for further functional and evolutionary study of the MADS-box genes in tomato.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals w...

متن کامل

Discovering Domains Mediating Protein Interactions

Background: Protein-protein interactions do not provide any direct information re‌garding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting do‌main pairs. However they do not consider the in...

متن کامل

Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening

The tomato (Solanum lycopersicum) protein MADS-RIN plays important roles in fruit ripening. In this study, the functions of two homologous tomato proteins, FUL1 and FUL2, which contain conserved MIKC domains that typify plant MADS-box proteins, and which interact with MADS-RIN, were analysed. Transgenic functional analysis showed that FUL1 and FUL2 function redundantly in fruit ripening regulat...

متن کامل

Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.

Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, ...

متن کامل

Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins.

The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 59 8  شماره 

صفحات  -

تاریخ انتشار 2008